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SECULAR AND NON-SECULAR BEHAVIOR 
FOR THE COLD PLASMA EQUATIONS 

by 
David Montgomery and Derek A. Tidman 

Goddard Space Flight Center 

SUMMARY 
2/2 c Y 

The origin of "secular" behavior for the nonlinear cold 
electron plasma equations is studied. The equations involved 
are closely related to the Klein-Gordon equation with a small 
nonlinear term. A method is developed for arriving at per- 
turbation theoretic solutions of this equation, and the method 
is then applied to the case of the higher order effects of an 
electromagnetic wave propagating in the cold electron 
plasma. An explicit expression for the second order fre- 

quency shift is calculated. A- 
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SECULAR AND NON-SECULAR SEHAVIOR 
FOR THE COLD PLASMA EQUATIONS* 

by 
David Montgomery+ and Derek A. Tidmanf 

Goddard Space Flight Center 

INTRODUCTION 

When attempts are made to calculate the behavior of nonlinear mechanical systems in per- 
turbation theory which goes beyond the linearized approximation, the difficulty of “secular” 
behavior often (though by no means always) appears. The higher orders contain, in addition to 
trigonometric terms, time-proportional or ‘kecular“ terms. The unbounded character of these 
terms soon invalidates the perturbation theoretic assumptions of smallness on which they were 
derived. 

A systematic program for doing a type of perturbation theory that is free of secular terms in 
the case of the harmonic oscillator equation with a “small” nonlinear term was given some time 
ago by Krylov and Bogolyubov (Reference l), and later refined and mathematically justified by 
Bogolyubov and Mitropolskii (Reference 2). ** Recently, considerable interest has arisen in 
modifying these techniques to deal with partial differential and differentio-integral equations, 
especially in connection with the work of Frieman (Reference 3) and Sandri (Reference 4). Earlier 
calculations, which are more closely related to this work, were made by Jackson (Reference 5) 
and Sturrock (Reference 6).t 

The system treated here, a partial differential equation, is considerably simpler than those 
described in References 3 and 4. 
in a relatively uncluttered way, some new features which emerge as a consequence of its being 
a partial differential, rather than an ordinary differential, system. 

It is nontheless believed to be of value in that it illuminates, 

The equation treated by Bogolyubov and Mitropolskii is 

‘To be published in Physics o/ biurds. 
?Permanent address: University of Maryland, College h r k ,  Maryland. 

**A quite similar technique v a s  put forward independently by M. V. Lighthill: “A Technique for Rendering Approximate Solutions to 

$See also Dolph, C. L.,  “A Unified Theory of the Nonlinear Oscillations of a Cold Rasma,” J .  Math. Anal. Appl .  5(1):94-118, 
Physical Roblems Uniformly Valid,” Phil.  Mug. Series 7, 40(311):1179-1201, December 1949. 

August 1962. 
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where E is a formal expansion parameter (eventually to be set equal to one) written to indicate 
the relative "smallness" of ;he right hand side; F ( x ,  dx/dt)  is a known nonlinear functional of x 

and dx/dt; and w2 is a constant. 

We shall examine the equation 

where E is again the formal expansion parameter; F is again a known function (which depends on 
the problem under consideration); and c 2  and A Z  are non-negative real constants. 

The immediate motivation for studying Equation 2 was that the equations of motion for a "cold" 
electron plasma in a uniform positive background may be put in this form, component by compo- 
nent. But it also has the value of being sufficiently simple that explicit zeroth order ( E  = 0 )  

solutions of it can be constructed which both do and do not lead to secular behavior when a 
straightforward attempt is made to extend them to higher order in E .  This simple example makes 
clear one difference between Equation 1 and an equation of the type 2. In general, for a given F, 

any E = o solution of Equation 1 wi l l  give rise to secularity when extended to higher order, whereas 
the conditions under which Equation 2 gives rise to secular behavior beyond the first order depend 
sensitively upon which E = o solution it i s  that one wishes to extend to higher order in E ,  even f o r  
a given F .  

We shall first give an example of both secular and non-secular behavior for Equation 2, and 
show how the difficulties may be remedied in the secular case. Then we shall give a simple 
physical example, that of the second order behavior of a nonlinear electromagnetic wave in a 
"cold" electron plasma. 

THE KLEIN-GORDON EQUATION WITH A SMALL NONLINEAR TERL 

A Single Monochromatic Wave 

We shall first consider perturbations about the following E = o solution to Equation 2: 

f = a c o s  ( ~ , x - o ~ t  ++) 

where 

and, for E = 0, the quantities K,,  w,, a, and 4 are constants. 

This happens to be a situation for which secularity arises,  so we shall set up the necessary 
formalism for  handling it from the beginning. Following Reference 2, we seek a solution to 
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Equation 2 of the form 

where the amplitude a is now determined as a "slowly-varying" function of x and t by the relations 

Here, I) is a new "phase" variable, to be chosen to coincide with the phase of Equation 3 for E = 0: 

2 = - wo + cBl (a )  + E2B2(a)  + . . .  . 

$ = KO + EC,(a) t EZC,(a>l + 0 . .  . 

The (as yet undetermined) functions A,, A,,  P O . ,  B,,  B,, - , C,, C,, * - e ,  , , D,, . e * ,  are to 
be chosen so as to render the solution (5) free from secular terms. Here, "secular" must be 
interpreted to mean +proportional; i.e., solutions can break down because of linear growth in x 

as well as in t . The functions U, , u,, - - - , are to be periodic in 3 .  

The program is to express the various terms in Equation 2, by means of the relations (5), (6), 
and (7), in terms of the U'S, A'S, B's, C's, and D's, as functions of a and 3 .  For brevity's sake, we 
shall first only go to O ( E ) ,  though in principle the method may be carried to any order in E .  Gen- 
erally, the algebra becomes prohibitive beyond 0 ( E , ) .  Hereafter, the notation "+ . - .  '' will  mean 
"of higher order in E". 

The result of differentiating f with respect to x and t and using (6) and (7) is: 

+ E  { hZ- rz: +u,) + 2 (w0 A, + c 2  KO D,) sin$ 

+ 2a (wo B, + cz  KO C,) cos 3 

+ 0 (€2 )  . 

The zeroth order part of (8) vanishes identically, by virtue of (4). The coefficient of E is to be 
equated to F( f , a f  /at, af /ax) ,  with the arguments replaced by their zeroth order values: 

f - a c o s 4  , 
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af/at - m o a  s i n $  , 

af /& - -Koa s i n $ .  

For the purpose Of finding u,, it is most convenient to write F as a Fourier series in $ : 

F ( a c o s $ ,  w o a s i n $ ,  - K o a s i n $ )  = g o ( a )  + ( g n ( a ) c o s n $ + f n ( a ) s i n n $ )  . (9) 

The f n ( a )  and g,(a)  are knownfunctions of the amplitude a ,  determined by the functional form of F. 

We shall make the assumption-always satisfied in practice-that the f n ( a )  and g,(a) go to zero, 
as a goes to zero, at least as fast as o (az). 

The equation for U, may be written as: 

' t [g,( a )  - 2awoB1 - 2ac2K,C1] cos $ 

(g,(a> cos n++ f n ( a >  s i n  n$) . 

This is, effectively, an ordinary differential equation in $ of a standard type. Its solution 
contains terms proportional to $ s i n $  and $cos$unZess the coefficients of s i n $  and c o s $  on the 
right hand side of (10) vanish. If they vanish, then the general solution may be found in the form 

Our objective is to find a solution free from +-proportional terms. This impels us  to choose 
A,, B,, C,, Dp so tha t  

2(w,A, + cZK,D1) = f , ( a )  ( 124  

Two more relations may be deduced from the conditions 

a Z l L = a  a t  ax ax a t  

and 
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Reference to (6) and (7) shows that, to lowest significant order, these become 

Equations 12 and 13 are four relations for the four unknowns A, ,  B,, C,, D,, and once they 
have been obtained, (10) can be solved in a straightforward way by means of (ll), andu, will  con- 
tain no$-proportional terms. The function B, can be interpreted as a "frequency shift" and C, as 
a Wave number shift." 

However, it is impossible to solve (12) and (13) completely without specifying the physical 
problem in more detail. For instance, if we wish to work a boundary value problem in which f is 
required to oscillate sinusoidally at a given x for  all t ,  we do not expect a or $ to vary with t, and 
B, and A, may be set equal to zero. This leaves 

c, = ___ 
2c2 Koa 

as the "wave number shift" and 

If we are interested in  an initial value problem in which a pure sine wave is given for all x a t  
t = 0, we may correspondingly set  C, and D, equal to zero and solve for A, and B,. 

are necessitated by still other problems. 
approach zero as a approaches zero, as they must in order to make physical sense.) 

Other choices 
(Note i n  passing that in both cases, the corrections 

All  this has been for  a completely general F, imagined to contain all harmonics in $. In prac- 
tice, it often happens that F contains only a few harmonics. Observe that secularity may not a r i se  
for some forms of the nonlinear term. Thus, if F is proportional to ( f ) 2  or faf  'ax, say, then f l (  a )  

and g , ( a )  will both vanish; and in this order, we may set  A,, B,, C, , D,, all identically zero, which 
is equivalent to a completely straightforward kind of perturbation theory. 
we were to have F proportional to ( f ) 3 ,  f , ( a )  is still zero, but g l ( a )  = 3a3/4 and astraightforward 
perturbation theory no longer works. The occurrence of secularity thus depends, in a given order, 
on the particular form of the nonlinear term. In the following sub-section, we shall show that, for 
a given F secularity likewise may or may not appear, depending on the choice of the E = 0 solution. 

On the other hand, if 

To close this discussion, we give the full  solution for u l ( a , $ )  of Equation 11. If we make 
the (arbitrary) choice that all the first harmonic shall be collected in lowest order, we may choose 
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When the phenomenon of secularity occurs, one must go to one higher order in E to get cor- 
rections to f which are uniformly valid through t e rms  of o( E )  for changes in x and t of O ( ~ / E ) ,  

and so the solution (15) is not of great interest by itself (Reference 2). However, the expressions 
such-as (14) fo r  frequency and wave number shifts are accurate to O( E ) ,  and are usually more 
accessible to measurement than the expression for U ,  , in any case. 

with f ( O )  given by (16), it is clear that we can always find a secularity-free perturbation theoretic 
solution to (2) of the form 

f!,”’(a> exP i r(Klx  - w l t  + 4,)  + s(K,x - w z t  + 4,fl (19) f ( ” )  = f: [ 
r.s=-m 

except when there happen to exist two integers F, ŝ  such that 

hZ ( - ~ z - ~ z t l )  - 2 F 5 (wlwz  - C 2 ~ , ~ z )  = o . (20) 

When (20) is fulfilled f ( I ) ,  ‘like the U, of Equation 10, will in general contain terms propor- 
tional to the phases, as well as trigonometric terms. 
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Two Coupled Monochromatic Waves of  Di f fer ing Frequencies 

but where there is not necessarily any other relationship between w, , K, and w,, K, . If we were to 
do a straightforward perturbation theory, assuming 



For a randomly selected pair of values w l ,  K, and w2, K,, there will  exist no integers r ,  S 

which fulfi l l  (20), and there is no necessity for the Bogolyubov techniques. When, on the other 
hand, two such integers ?, <, do exist [the relation (20) will  also hold for -?, -S  , of course], then 
the Bogolyubov techniques are called for. One method of introducing them is the following, though 
it is not the only method? Seek a solution of the form 

f = a(cos+l+cos+2)  + ~ u ~ ( a . + ~ , + , )  + - 1 .  

where now the amplitude a and the phases +, and $2 develop according to: 

The left hand side of (2) may again be computed, by using the relations (21), to give 

aB - aA 
t 2acZK1D, - c 2 K  a A  

*l 
2awlC1 - w ,  -a2 

aA + 2 c Z a K , D 2  
aA - c2K2 E] + cos $2 [2aw,C2 -ol - w 2  q 

+ 2 [01w2 - c2K,K,] *}+ O ( E 2 )  . 

'For simplicity, we asSume only one independent pair of such integers, 't; exists .  



The zeroth order part of (22) vanishes identically. The first order part now must be equated 
toeF[a(cos$,+cos$,)  , a ( c i l s i n $ l + w 2 s i n $ 2 ) ,  - a ( K 1 s i n $ l + K z s i n $ 2 ) ] .  It is most convenient to 
write this as a complex Fourier series, 

where Fmn* = F-,,,,, since we deal only with real quantities. Calling everything in the first  set  of 
braces in Equation 22 If G ( a ,  A,  B, c , , , ,  D ~ , ~ ) , ~ ~  we may finally write the equation for u , . a s  

This equation, analogously to (lo), has a readily obtainable secularity-free solution of the form 

if and only if the functions A, B, C l , 2  , D l , 2  are chosen to depend on $1 and $2 in such a manney 
that: 

(26) d$, 4 d$2 e- '(%it '+2)G(a,  A,  B, C, , , ,  D l , 2 )  - F;; ( a )  = 0 . 

Since (26) involves complex numbers, it really amounts to two real equations upon A, B ,  cl, ,, D ~ , ~ ,  

which are linear partial differential equations with periodic c0efficients.t We need not write them 
down in full detail, since they a r e  most cumbersome, and not of interest for our purposes here. 

From the requirements that 

three additional conditions may be adduced. They are: 

tWe may consider A, E, . * . . a s  being expressed a s  Fourier series in #,, $2, in which case (26) leads to algebraic conditions on the 
Fourier coefficients. 
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Satisfaction of these five relations on the six quantities A ,  B, c ~ , ~ ,  I I ~ , ~ ,  then, will  guarantee .that the 
solution shall be secularity-free. It is clear that considerable latitude is left to choose the func- 
tions conveniently for whatever problem is under consideration. 
however, is that secularity is by no means inherent in the equation to be studied, or in the form of 
the interaction term. Nor does its origin necessarily have a simple physical interpretation as it 
does for Equation 1, where the presence of secular terms is simply interpretable as a resonance 
between one of the frequencies present in the nonlinear coupling term and one of the natural fre- 
quencies of the system. It would take considerably more insight to apprehend the physical meaning 
of Equation 20, or any connection it might have with the secularity condition for Equation 10. 

The point to be emphasized, 

THE COLD ELECTRON PLASMA 

Suppose w e  consider a cold (no thermal motions) electron plasma of equilibrium number 
density no, moving in a uniform positive background, assumed immobile. If we make a perturba- 
tion about a uniform, field-free equilibrium, the appropriate variables for describing the system 
are: 

5 = electron velocity, 

- e (no + n(Z, t )) = electron charge density, 

+ eno = positive background charge density, 

Z, Z = electric and magnetic fields. 

All these wil l  be treated as perturbations-i.e., as first order in the amplitude-except for n o .  

The dynamical equations a r e  well  known: 

a -  X - B  = 0 .  

Equations 29 can be regarded as initial conditions; once fulfilled, they a r e  preserved by 
Equations 28. 
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A small amount of algebraic juggling shows that Equations 28 lead to 

The formal expansion parameter E has been written on the right hand side of Equations 30 only to 
remind us that these t e rms  are "small" in the sense of being second order in the amplitude. The 
quantity (.,'e is hnoe2/m, the plasma frequency. 

If we now restrict  ourselves to disturbances which a r e  functions of only one spatial dimension 
(x, say), we may write the expression (30a) in the form 

ax2 pe 

where 81, i  = 0 unless i = 1, and 81,1  = 1; Efi represents the ith component of the right hand side 
of (30a). 
It matters not at all that we have not bothered to express the right hand side of (30a) as a func- 
tion of Ealone, since we always need the values of the quantities which enter into Si to one lower 
order than those under consideration on the left hand side of (30a); and those will  be shown to be 
obtainable in  each order directly from (28). 

Since (30b) is just the curl of (30a), it is not necessary to wr i te  it in the form of (31). 

The E = 0 solution to (31) is just the standard cold-plasma set of field-free normal modes, 
which is well understood (Reference 7). It will be apparent that each component of (31) has the 
form of Equation 2 and is therefore immediately susceptible to the methods already discussed. 
Equation 31 represents a generalization of the equation treated by Jackson (Reference 5), which, 
however, does not exhibit all the features of (31) because of the absence of x-derivatives on the 
left  hand side in the purely electrostatic case, and of the fact that the x and t dependences separate. 

The number of possibilities from (31) is very large, due to the wide range of choices for the 

We shall extend 
E = 0 solution. 
ence 5)-is that of a pure transverse, linearly polarized, electromagnetic wave. 
this solution to the next two orders  above the linear approximation in the following paragraphs. 

The simplest case-beyond that of a pure electrostatic oscillation (Refer- 
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Calling our base vectors Cx, Cy,  t, , the appropriate zeroth order solution is 

3 = E, c o s ( k o x - o , t )  , 

ck, = -Eoe^zcos (kox-wot )  
w O  

tY s in  (k,x - uot) " = -  + eE0 
W O  

n = O  

where 

o,' = u 2  t c Z k t  
pe 

This zeroth order solution for E is conveniently written: 

where 6 is a column vector 

4 = (i) 
and a = E, is the amplitude. 

The results of Section I1 suggest that we seek a solution of the form 

= a(+i ei4 t+: e-i+) t E " ( ' )  ( a , + )  t E Z u j 2 ) ( a , + )  t .- Ei 

where now the amplitude a and phase 3 are to vary in x and t according to 

aa = EAl(a)  + E2Az(a)  t * . *  , 

aa ax = EDl(a)  + e Z D 2 ( a )  + , 

- 2 = -0, + EB,(a) t E z B 2 ( a )  + - * *  , 

- 2 = k, t ECl(a)  + E2CZ(a)  + * - *  , 

with the functions A,, B,, , as yet undetermined. 

(32) 

(33) 

(34 1 

(35) 

(36) 
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The left hand side of (31), expressed in terms of these functions, becomes, for i = 1, 

and for i = 20r 3, 

These three expressions a r e  to be equated to the three components of the right hand sides of 
(31), with the quantities 3, 2, 5, n replaced by their values (32), and with the substitution E, - a .  

The result can be conveniently written as a Fourier ser ies  

where the ai  (m,a)  a re  known functionals of a .  

Suppose we now consider whether secular terms can arise. We seek the solution for ~ i ( ~ ) i n  
the form 

(we have made use of 4, = 0). 

12 
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We may always solve (41) for ut1)(,, a)  with the absence of $-proportional terms, except when 
a coefficient of u(')(m, a,)on the left hand side of (41) vanishes for some m. Since > w z  it is 
clear that this can only occur when m = f l  , and only in the components i = 2 or 3. However, a 
term-by-term inspection of ai(m,a) reveals that for i = 2 or 3, the quantities ai(m,a) vanish 
identically for the choice (33) of the zeroth order values. Thus a result emerges which would 
have been hard to guess from the original set of equations (28). Secular behavior cannot arise 
in second order for this case, and we may Set A, = B, = c ,  = D, = 0 ,  and solve in a completely 
straightforward way for u(')(m, a) :  

cDi(m, a)  
u:I)(m, a)  = l - m 2 + l ) w :  + m 2 6 , , i  (a; -0:) , m # * 1 ,  

The calculation of the coefficients of the Fourier coefficients is a matter of simple algebra, 
and we may wr i te  down in full the first correction to the linear solution (32): 

ekowi  s i n  2 (kox - mot) I 

;(,) = E(') 

e 2 n o k t  cos 2 (k,x - uot) 
n ( l )  = - E,2 (&,'. +4cZk:) ' 

The only qualitatively new feature which shows up in o( E), then, is a longitudinal electric 
field. It is only in 0(e2) that secularity manifests itself and it becomes necessary to use the 
Bogolyubov methods. Making use of the O ( E )  solution we have just computed, we may wri te  down 
the O(E'\ part of the left hand side of (31) in terms of the A's, B'S, etc. We shall need: 

t (- 2 i w o A 2  + 2 a w p 2  - 2ik,c2D2 + 2 a ~ ' k ~ C ~ ) q 5 ~  e i4  
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It is also a simple matter to compute the 0 (g2) part  of the right hand side of (31) from (43) 
and (32). The result expressed in t e rms  of aand 3, is 

Since the only nonvanishing component of (45) is in the 2-direction (y-direction), the only 
nonvanishing component of ~ i ( ~ )  will  also be u,(,) .  The equation to be solved in the 0 (e2) approx- 
imation is, therefore: 

-(- 2iwoAz t 2awoB2 - 2 ikoc2Dz  f 2akoc2C2) q52 e i #  

- (2iwoAz t 2awoBz t 2ikoc2D2 t 2aczkoC2)  6; e- i+ 

We m a y  find a solution to (46) of the form 

which is free of $-proportional terms, if  and only i f  the coefficients of ei+ and e-'+ on the right 
hand side of (46) vanish. This gives us two conditions on A,,  B, ,  C, , D,, which a r e  algebraic 
relations. Two more, analogous to Equations 13, a r e  given by the requirements that 

and 

they are: 
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Let us now specialize the problem to one in which the spatial periodicity and amplitude are 
given and we are to calculate the "frequency shift." This means setting c, = D, = 0 .  The condi- 
tion that the coefficients of ei+ and e-i+ on the right hand side of (46) vanish reduces to the equation 

w k,' e2a3 ( L O A ,  - awoB2) = Pe 

4mz w,' + 4c2k;) 

and its complex conjugate relation. We may therefore find A, = 0 ,  and the frequency shift aw 
becomes (substituting E, for the amplitude a): 

ezk; up: E,' Ow = -B, = 
4m2w: (L,', +4cZk,') 

(49) 

It does not seem worthwhile to write down the O ( E ~ )  corrections to E, g, ;, and n ,  though it would 
be easy to do so. In any experiment one might imagine, Equation 50 would probably be the easiest 
quantity to measure. 

It is possible to calculate the frequency shift of a standing electromagnetic wave of given 
periodicity as well. One assumes a linearly polarized standing wave solution for (31) in lowest 
order and writes 

E, = ai sin k, xcos+ t eui(1) (a, +, x )  + (a, +, x) + ... 

Then, only the t -dependence of the phase variable and amplitude a r e  expanded 

da 
dt - EAl(a) + €'A,(=) + ... _ _  

$ = w,  + EBl(a) + EZBz(a) + 

In lowest significant order, the frequency shift turns  out to be exactly one eighth of the result given 
in Equation (50). 

DISCUSSION 

We have given a technique for obtaining uniformly valid, perturbation theoretic solutions to the 
Klein-Gordon equation with a small nonlinear term. The method has been applied to calculate the 
second order frequency shift of an electromagnetic wave in a cold electron plasma. The smallness 
of the expression (50) for attainable parameters is an indication of just how good an approximation 
the linear theory is at these frequencies. 
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It is not to be inferred, however, that the method adapts itself readily to all partial differential 
equations. For instance, the reader can easily convince himself that it fails for a nonlinear sound 
wave described by the Euler equations. (It appears to fail in all situations for which the E = o 
equation is a wave equation, (az/atz - cZa2/axz) f = 0 .) The physical reason is that, due to a 
steepening of the exact nonlinear wave front-obtainable f rom the Riemann invariants-a vertical 
tangent develops after a time of 0(1/ the amplitude). This destroys any regularity properties 
which may have existed in the original wave profile. Since the exact solution does not remain 
"close" to the E = o solution in any sense, after a time of order 1 / ~  , it is not surprising that per- 
turbation theory is of little use beyond this time. 

(Manuscript received September 1963) 
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